
Relayd: a load-balancer for OpenBSD

Giovanni Bechis
giovanni@openbsd.org

University of Applied Sciences,
Vienna, Austria

May 5, 2012

giovanni@openbsd.org

what is relayd useful for ?

I Reverse proxy

I Ssl accelerated reverse proxy

I Transparent proxy with filtering capabilities

I Application redirector

I Load balancer

I Wan link balancer

a short story

I First imported in OpenBSD 4.1

I Initially it was called hoststated(8)

I Renamed to relayd(8) in OpenBSD 4.3

I Written by pyr@ and reyk@

some relayd(8) features

I written with security in mind and based on imsg framework

I ipv4 and ipv6 capable

I carp(4) capable

I snmpd(8) integration

software anatomy

Relayd is divided in a main process and 3 different engines

I Parent process

I HCE: Host check engine

I PFE: Pf engine

I Relay engine

the parent process

The parent process is the only one that runs with elevated
privileges, it runs as ’root’ to be able to handle:

I configuration files

I setup sockets

I external script execution (privileges will be dropped to relayd
user before ”execlp” function call)

I carp demotion requests

host check engine

The Host Check Engine uses some methods to verify that the
target host service is functional, before routing traffic to the host.
It can use:

I icmp

I tcp

I ssl

I http/https

I external scripts

pf engine

The Packet Filter Engine allows integration with the OpenBSD
Packet Filter.

I Creates and destroys PF rules

I Updates PF tables based on HCE notifications

relay engine

This engine is responsible to filter and relay packets

I Creates listening sockets for services

I Filters protocols before relaying

reverse http proxy

reverse http proxy

table <web_hosts> { 10.0.0.1 }

interval 10

timeout 200

prefork 5

log updates

relay httpproxy {

listen on 192.168.0.1 port 80

forward to <web_hosts> port 80 check http "/" code 200

}

reverse http proxy

A script can be used to check the web server status

table <web_hosts> { 10.0.0.1 }

relay httpproxy {

listen on 192.168.0.1 port 80

forward to <web_hosts> port 80 \

check script "/scripts/chkweb.pl"

}

relayd(8) check scripts
A script can be used to check the web server status ... or
everything else

#!/usr/bin/perl -w

use Socket;

my $remote = $ARGV[0];

my $proto = getprotobyname(’tcp’);

socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);

my $hport = 80; # Http port

my $sin = sockaddr_in($hport,inet_aton("$remote"));

if (connect(Socket_Handle,$sin)) {

socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);

my $mport = 11211; # Memcached port

$sin = sockaddr_in($mport,inet_aton("$remote"));

if (connect(Socket_Handle,$sin)) {

exit 1;

} else {

exit 0;

}

} else {

exit 0;

}

http filters

Relayd in ”reverse proxy” configuration can filter http requests

I Change or append http headers

I Filter http requests by checking http headers

I Filter http requests by checking url

http filters

http protocol "httpfilter" {

Return HTML error pages

return error

allow logging of remote client ips to internal web servers

header append "$REMOTE_ADDR" to "X-Forwarded-For"

URL filtering

request path filter "articleid=*select*" \

from "/module/article/article/article.asp"

close connections upon receipt

header change "Connection" to "close"

}

http filters

ssl accelerated reverse http proxy

ssl accelerated reverse http proxy

table <web_hosts> { 10.0.0.1 }

http protocol "httpfilter" {

close connections upon receipt

header change "Connection" to "close"

SSL accelerator ciphers

ssl { sslv3, tlsv1, ciphers "HIGH:!ADH", no sslv2 }

}

relay httpproxy {

listen on 192.168.0.1 port 443 ssl

protocol "httpfilter"

forward to <web_hosts> port 80 check http "/" code 200

}

ssl accelerated reverse http proxy

Rsa certificate generation

openssl genrsa -out /etc/ssl/private/192.168.0.1:443.key 1024

openssl req -new -key /etc/ssl/private/192.168.0.1:443.key \

-out /etc/ssl/private/192.168.0.1:443.csr

openssl x509 -req -days 365 \

-in /etc/ssl/private/192.168.0.1:443.csr \

-signkey /etc/ssl/private/192.168.0.1:443.key \

-out /etc/ssl/192.168.0.1:443.crt

With the files 192.168.0.1:443.crt and 192.168.0.1:443.key in the
right place relayd will do his job

transparent http proxy

transparent http proxy, relayd setup

http protocol "httpfilter" {

Return HTML error pages

return error

header change "Connection" to "close"

Block requests to unwanted hosts

request header filter "*youtube.com*" from "Host"

request header filter "*facebook.com*" from "Host"

}

relay httpproxy {

listen on 127.0.0.1 port 8080

protocol "httpfilter"

forward to destination

}

application redirector

application redirector, relayd setup

table <srv> { 192.168.0.1, 192.168.0.2 }

redirect mysql {

listen on 192.168.3.1 port 3306

tag RELAYD

sticky-address

forward to <srv> port 3306 mode roundrobin check tcp

}

load balancer

load balancer

dns protocol "dnsfilter" {

tcp { nodelay, sack, socket buffer 1024, backlog 1000 }

}

relay dnsproxy {

listen on 127.0.0.1 port 8053

protocol "dnsfilter"

forward to <dns_servers> port 53 \

mode loadbalance check tcp

}

relayctl(8)

I relayctl is the software used to control relayd

I It can change many configurations at runtime

I It can be used to show many informations about our current
relayd(8) setup

relayctl(8)

Some info for our ”relay” setup

$ sudo relayctl show sessions

session 0:1 192.168.107.205:44159 -> :80 RUNNING

age 00:00:01, idle 00:00:01, relay 1, pid 5613

$ sudo relayctl show hosts

Id Type Name Avlblty Status

1 table web_hosts:80 active (3 hosts)

1 host 10.0.0.1 100.00% up

total: 12/12 checks

2 host 10.10.10.22 100.00% up

total: 12/12 checks

3 host 10.10.10.33 100.00% up

total: 12/12 checks

relayctl(8)

Some info for our ”redirect” setup

$ sudo relayctl show summary

Id Type Name Avlblty Status

1 redirect mysql active

1 table srv:3306 active (1 hosts)

1 host 192.168.1.3 100.00% up

2 host 192.168.1.4 0.00% down

relayctl(8)

Pf interaction

$ sudo pfctl -a relayd/mysql -s rules

pass in quick on rdomain 0 inet proto tcp from any \

to 192.168.1.5 port = 3306 flags S/SA \

keep state (tcp.established 600) \

tag RELAYD rdr-to <mysql> port 3306 \

round-robin sticky-address

advanced monitoring

Both Munin and Nagios have plugins to check relayd health status

questions ?

